DIFFERENTIATION OF HUMAN OVARIAN FOLLICULAR GRANULOSA CELLS INTO KERATINOCYTES
Authors
Abstract:
Background & Aims: Stem cells are undifferentiated cells and are found in different tissues. These cells have capacity of self-renewal and differentiation into other lineages. Granulosa cells (GCs) are the multipotent stem cells. In the present research we evaluated the differentiation potential of GCs into keratinocytes. Material & Methods: GCs were cultured after enzymatic isolation from ovarian follicle. Then, keratinocyte inductive medium was added and expression of keratin10 and keratin14 were investigated with western blotting technique. Results: The results of the flow cytometric analysis of the isolated cells indicated the high expression of mesenchymal stem cell specific antigens (p < 0.05). Also, the results of the western blotting showed the expression of creatine 10 and creatine 14 proteins in all groups except for negative control (p< 0.05). Conclusion: Human granulosa cells have a very high ability to differentiate into keratinocytic cells, and with further research, it is possible to provide a suitable substrate for the use of human granulosa cells to treat severe skin lesions.
similar resources
Differentiation of human embryonic stem cells into neurons
Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...
full textDifferentiation of human embryonic stem cells into neurons
Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...
full textMonoclonal antibodies against pig ovarian follicular granulosa cells induce apoptotic cell death in cultured granulosa cells.
Two monoclonal antibodies capable of inducing granulosa cell apoptosis were produced against granulosa cells prepared from antral follicles of pig ovaries. The healthy follicles, 4-5 mm in diameter, were dissected from the ovaries of gilts, and then granulosa cells were isolated. BALB/c female mice were immunized with the isolated granulosa cells. Antibodies against the granulosa cells were det...
full textdifferentiation of human embryonic stem cells into insulin- secreting cells
introduction: type i diabetes mellitus is caused by autoimmune destruction of the insulin-producing β-cells. a new potential method for curing the disease is transplantation of differentiated insulin- secreting cells from human embryonic stem cells. methods: human embryonic stem cell lines (royan h1) were used to produce embryoid bodies. differentiation carried out by growth factor-mediated sel...
full textDifferentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells into Insulin Producing Cells Using Minimal Differentiation Factors
Background & Aims: Type 1 diabetes, or insulin-dependent diabetes, is an autoimmune disease in which pancreatic beta cells are destroyed by the immune system. Hitherto, no definite treatment has been found for this condition. Mesenchymal stem cells (MSCs) are multipotent, self-renewing cells that have the ability to differentiate into mesodermal tissues. This ability has attracted the attention...
full textDifferentiation of Mouse Embryonic Stem Cells into Hematopoietic Cells
Purpose: Differentiation of Mouse embryonicstem cells into Hematopoietic cells. Materials and Methods: In this study, we used EB formation system for Hematopoietic differentiation of mouse embryonic stem cell (Royan B1) in suspension culture. EBs cultured in medium with Hematopoietic inducer cytokines (SCF, TPO, GMCSF, IL3, Flt3 and EPO) .presence of hematopoietic differentiated cell assessed ...
full textMy Resources
Journal title
volume 31 issue 11
pages 813- 822
publication date 2021-01
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023